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0. Disclaimer
ThingLab II is a research prototype and, as such, it's goal is to 
demonstrate concepts rather than to provide the world with a 
polished user interface construction tool. Thus, while we have tried 
to make it usable, it still has obvious  blemishes and missing 
features  and probably numerous bugs. We hope that you will see in
ThingLab II the potential usefulness of constraints rather than the 
limitations of a particular system.

This manual was, of necessity, written in haste. We hope that this, 
too, will be forgiven. The alternative was to provide no manual at 
all!

1. Introduction
ThingLab II supports the exploration of constraint-based user 
interfaces. It consists of a set of classes that define constraints and 
constrainable objects called things. It also includes an incremental 
constraint satisfier, a module compiler, a construction-set style user
interface, various tools, and an extensible set of primitive user 
interface building blocks.

ThingLab II uses the dataflow constraint model. In this model, a 
constraint is a collection of functions that use some subset of the 
constrained variables as inputs and compute the remainder as 
outputs. Each of these functions, called constraint methods (or 
methods, for short), can be executed to enforce the relationship 
represented by the constraint. For example, the constraint:

a = b + c

has three constraint methods:
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a := b + c
b := a - c
c  := a - b.

Dataflow constraints can be used over a wide range of data types. 
For example, ThingLab II includes constraints that operate on 
numbers, bitmaps, strings, and lists. Dataflow constraints can also 
be executed 
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efficiently. However, they are not as powerful as some other kinds 
of constraints. For example, they cannot be used for linear 
programming, linear algebra, or scheduling problems. 
Furthermore, the particular dataflow constraint solver in ThingLab 
II cannot handle inequality constraints such as "x < 10" and is not 
guaranteed to find a solution if the constraint graph contains 
cycles. These limitations, along with the decision to use dataflow 
constraints in the first place, represent deliberate engineering 
choices. We believe that dataflow constraints, even with our 
restrictions, are sufficiently powerful for most user interface 
applications and the restrictions permit them to be implemented 
extremely efficiently. However, it is important to keep its limitations
in mind to avoid asking ThingLab II to solve problems that it was 
not designed to handle.

The remainder of this manual presents a tutorial example, expands 
upon some of the basic concepts of ThingLab II, and briefly 
describes how to operate some of the tools. An appendix describes 
how to file ThingLab II into a Smalltalk-80 image.

2. Getting Started
To get started, invoke the "ThingLabII Parts Bin" item in the 
background menu. This gives you a view (i.e. a window) on the root 
of the parts bin hierarchy. There is initially only one parts bin, "All 
Parts," containing all the primitive Things. The "All Parts" bin will 
be updated as you work to contain all new Things you create. Open 
"All Parts" by selecting it and using the "open" menu item or by 
double-clicking. You should see a bunch of named icons like 
PointThing, LineThing, Sum, and MidPoint. These are primitive 
things.

Hint: Because the Mac mouse has only one button you can get the 
middle-button (yellow) menu by pressing the red button over the 
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title area of a ThingLabII window. The right-button (blue) menu is 
also available in the gray area around the title. This shortcut is not 
very useful on machines with three button mice!

Now create a new, empty thing by invoking the "new thing" menu 
item in one of the parts bin windows. Note that the new thing is 
given a unique name such as "Thing1" and an icon for it appears in 
"All Parts." The new thing's name and default icon may both be 
changed, if desired, 
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by selecting the thing's icon in "All Parts" and invoking the 
appropriate operation from the menu.

Components are added to the new thing by dragging them from a 
parts bin into the thing construction view. There is a modal 
dialogue involved when inserting new components. After you've 
dragged a group of components into the target thing and released 
the mouse button, the system expects you to specify where to place 
the parts by clicking the mouse once for each part. Add HLine and 
VLine things to the new thing and then pick up the endpoint of one 
of the lines with the mouse and move it around. You will notice a 
heavy black square appear when you move the point over any other
point. This indicates that the points may be glued together 
("merged"). If you release the mouse at this point, the merge will be
done. You should now be able to construct simple polygons and 
rectangles (using LineThings, HLines, and VLines). Try it.

3. Concepts
Things

The primitive elements of the ThingLabII constraint programming 
system are variables and constraints. The unit of encapsulation 
used to assemble these elements into higher-level objects is the 
thing. A thing has a collection of parts, where each part is either a 
primitive variable or another thing. For example, a Node thing is 
composed of a primitive variable named ‘value’ and a Point thing 
named ‘location’. This Point thing is in turn composed of two 
primitive variables, named ‘x’ and ‘y’. In addition to its parts, a 
thing may also have a set of constraints that define relationships 
among its parts and subparts. For example, a HLine thing has such 
a constraint stating that the y values of its two endpoint Point 
things should be equal.
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Cloning

New instances of things are created by copying an existing instance
called the prototype. When a thing is copied, its structure of parts 
and subparts is copied all the way down to the leaves and its 
constraints are copied and installed in the new thing. The copying 
process is called cloning. A new kind of thing is created by starting 
with a new, empty thing, copying previously created things into it, 
and connecting these 
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things together with constraints. The resulting object is then the 
prototype for the new type of thing.

Merging

Identity relationships between parts of a thing may be established 
via merges. A merge, which may be thought of as a special sort of 
constraint, equates two subpart trees so that they become a single, 
shared part. After two subparts are merged, all constraints from 
the original subparts are applied to the new shared part. For 
example, the endpoints of two Line things might be merged. If the 
merged point is then dragged, both lines will be affected. 
Furthermore, if one of the original Line things was constrained to 
be horizontal and the other was constrained to be vertical, the 
merged point will now be governed by both constraints.

The Construction Kit Metaphor

The construction kit metaphor for thing construction has proven to 
be a powerful mechanism for packaging and reusing constraint 
“programs.” For example, a Quadrilateral may be constructed from 
four Line things. The Quadrilateral may be turned into a Rectangle 
by adding two horizontal and two vertical constraints. A center may
be added by stretching a MidPoint thing across the diagonal. 
Finally, the centers and corners of several instances of the resulting
CenterRectangle may be combined with additional vertical and 
horizontal constraints to produce a set of aligned boxes for a 
diagram or a paned-window layout. Note that many of the 
intermediate stages in this construction — Quadrilaterals, 
Rectangles, and CenterRectangles — are re-usable objects in their 
own right.

Symbolic Strengths
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Constraint strengths are specified using Symbol objects such as 
#required. These are converted into Strength objects in various 
data structures. Class Strength keeps a table in a class variable 
that maps symbolic names to their indices in the table, which are 
used to order the set of Strengths. It is possible to insert new 
symbolic strengths into this table by modifying and then invoking 
Strength's class initialization method.



Optimal, that is, according to the locally-predicate-better measure 
of the goodness of a solution to a given constraint hierarchy. Since 
there may be conflicts between constraints and some constraints 
are stronger than others, not all the constraints will be satisfied. 
For the specifics, see [a bunch of papers].
\

Constraints

Constraints may be defined either by using an equation:

Constraint
symbols: #(a b c)
equation: 'a = (b + c)'

or by explicitly listing its constraint methods:

Constraint
symbols: #(a b c)
methodStrings: #(

'a := b + c'
'b := a - c'
'c := a - b')

In this example, the resulting constraints would be identical. The 
first form is preferred as it is compact and easy to read. There are 
times, however, when the equation translator cannot find an inverse
function (such as when operating on bitmaps) or when one wishes 
to make a one-directional constraint. In these situations one must 
resort to the second form.

Note the parenthesis in the equation string in the first form. These 
are necessary so that the top-level expression passed to the 
equation translator is the "=" message send. If the parenthesis 
were eliminated the top level expression would be the "+" message 
send, since Smalltalk is evaluated left to right, and the equation 
translator would complain. (This is a blemish; it would be easy to 
make the equation translator figure this out for itself.)

Binding Constraints to Variables
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Constraints are bound to their constrained objects using Reference 
objects. A Reference is a rooted symbolic path to a part or subpart 
of a thing. The "->" message can be sent to any thing to create a 
reference to one of its parts. For example: "myThing->#line1.p1.x".
Note that the sequence of subpart names, "line1," "p1," and "x," are
represented as a 
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single Symbol object. The symbol is broken into components at the 
period characters when the Reference is created. In some contexts, 
the root thing is implied, as in:

aThing require: #node.location.x equals: #box.center.x

A previously created, unbound constraint may be bound to a set of 
variable references using the message "bind:strength:", as in:

midPointConstraint
bind: (Array

with: self->#topLeft.x
with: self->#center.x
with: self->#bottomRight.x)

strength: #required

Note that the strength must also be specified when a constraint is 
bound. Often, constraints are bound when they are created, as in:

Constraint
symbols: #(p1 midpoint p2)
equation: '(p1 + p2) // 2 = midpoint'
bind: (Array

with: mpThing->#p1.y
with: mpThing->#midpoint.y
with: mpThing->#p2.y)

strength: #stronglyPreferred

There are a number of shorthand forms for constructing and adding constraints 
to a thing, such as this example from the MidPoint primitive thing:

mpThing
stronglyPrefer: '(p1 + p2) // 2 = midpoint'
where: #((p1 p1.y) (midpoint midpoint.y) (p2 p2.y))

Note that the strength is encoded in message selector and that the symbolic 
variable names and their paths (relative to root "mpThing") are compactly 
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specified in the "where:" clause. Many other shorthand forms can be found be 
browsing the protocols for Thing.
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Adding and Removing Constraints

Confusing as it is likely to be, there are two senses in which constraints are 
added and removed. First, they are added to and removed from the constraint 
graph. A constraint does nothing, even after it has been bound to its variables, 
until it is added to the constraint graph with the message:

aConstraint addConstraint

It can be deactivated again by sending it the message:

aConstraint removeConstraint

The other sense in which constraints are added and removed has to do with 
them being owned by a thing. Any thing may own a set of constraints, and 
those constraints are cloned when the thing is cloned. Constraints attached to 
parts of the thing but not owned by it, such as mouse constraints, are not 
cloned with the thing. Constraints may be added to and removed from things 
using the following messages:

aThing addConstraint: mpConstraint
aThing removeConstraint: mpConstraint

Adding a constraint to a thing also adds it to the constraint graph as a side 
effect. (This sounds more confusing than it really is.)

Planning

One of the strengths of ThingLab II is the performance of its 
incremental constraint satisfaction planner. Constraint satisfaction 
is cheap enough that one may add and remove constraints 
dynamically and, in fact, the ThingLabII user interface does exactly 
this as the user interacts with the system. The incremental planner 
maintains a data flow graph among the constraints as constraints 
are added and removed. The dataflow graph represents a locally-
predicate-better solution to the current set of constraints. (Since 
there may be conflicts between constraints and some constraints 
are stronger than others, not all the constraints will necessarily be 
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satisfied. For details on how and why the constraint satisfier works, 
refer to the CACM article.)
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The dataflow graph can be reduced to a linear list of constraint 
methods called a plan. The methods of the plan are executed in 
order to compute a solution to the current set of constraints. In the 
original ThingLab, this list of methods would have been compiled 
into a Smalltalk method. Although the code generated was quite 
fast, the compilation process itself was expensive and had to be 
repeated each time the constraint graph was modified.

Module Compilation

Unlike the original ThingLab, ThingLabII does not normally compile
plans into Smalltalk methods. However, when a given thing has 
been developed to the point of stability and would be useful as a 
building block for constructing other things, it may be compiled 
into a module. A module behaves externally like the thing from 
which it was compiled, but with better performance. All possible 
plans for satisfying the module's internal constraints are pre-
computed, optimized, and compiled into Smalltalk methods. The 
module's planning behavior is similarly pre-computed so that it 
appears to the planner to have only a single (albeit complex) 
internal constraint.

Constructing Things

New kinds of things may be constructed either by using the direct-
manipulation interface or by writing a program to do the 
construction. A program can do anything that can be done using 
the direct-manipulation interface plus various things which are 
awkward to do via direct manipulation, such as using nested loops 
to interconnect an array of components with regular structure (e.g. 
laying out a chess board). The direct-manipulation interface is also 
not a good vehicle for adding constraints that are not built into 
some graphical object, since there is no way to view and 
manipulate these “invisible” constraints. The demo classes are 
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examples of how to construct things using programs.
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Adding Primitive Things

A new primitive thing is added by creating a new subclass of 
PrimitiveThing. Three initialization methods are used to define the 
structure of the new thing:

initializeStructure,
initializeConstraints, and
initializeValues.

The parts of the thing are defined in initializeStructure. Any part 
that holds a thing must be initialized here. Instance variables not 
initialized to be things are assumed to hold non-thing values which 
do not need to be recursively copied during cloning. Constraints are
defined in initializeConstraints. Finally, initial values are declared in
initializeValues. Any of these initialization methods may be omitted 
if desired; the default behavior is to do nothing.

By convention, all primitive things have a class initialization method
that initializes their icon bitmap for the parts bin and their 
explanation string. The class initialization method must do "self 
initializePrimitive" before doing anything else. If the class 
initialization method is omitted, a default method provides a 
generic icon bitmap and explanation string.

If the new primitive is to have custom appearance, it must supply a 
display method and various other glyph protocol methods. 
Likewise, if it to have custom mouse or keyboard input behavior, it 
must supply methods to support this behavior. Unfortunately, 
although it is not difficult, it is beyond the scope of the introductory
manual to describe in detail how to add such behavior. The best 
way to learn how to do it is to read the comments in class Thing 
and study the supplied primitive things.
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Time and State

ThingLabII captures the notion of state changes in time via a 
mechanism called history variables. A history variable stores not 
only its current value, but some fixed number of past values as well.
Constraints may refer to the values of previous states but may not 
alter 
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them. This forces time to always move forward and allows the 
implementation to truncate histories at some reasonable limit. A 
system clock advances the histories of all history variables in a 
given thing as a single atomic operation.

This simple model allows one to elegantly express time-dependent 
behavior. For example, a time-varying variable can be integrated by
using a Sum constraint to add its current value to the previous 
value of the variable containing the integral. Similarly, the discrete-
time derivative of a time-dependent variable can be computed by 
taking the difference between successive states. More relevant to 
user interface construction, one can build finite state machines for 
processing user inputs or producing simple animations. As another 
example, the browser demo uses the history mechanism to pre-
select the most recently selected message category and message 
pane selections, if possible, when the class pane selection is 
changed.

Constraints and Imperative Code

A user interface must inform the application program of user 
actions. Similarly, the application program will take actions, 
autonomously or in response to user actions, that will effect the 
graphical objects visible in the user interface.

It is best to think of the world in two parts: the world of constraints 
and constrained variables (the constraint world) and the less 
disciplined world of normal Smalltalk programs (the imperative 
world). The imperative world is in control but interacts with the 
constraint world by:

1. instantiating a set of variables,
2. adding and removing constraints on those variable,
3. examining the values of constrained variables,
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4. changing the values of constrained variables, and
5. invoking the constraint satisfaction machinery.

Interacting with the graphical objects of a user interface occurs 
through a Smalltalk View-Controller pair that knows about the 
constraint world. For example, moving a point causes mouse 
constraints to be added to the point, all constraints to be repeatedly
satisfied as the 
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mouse moves, and the mouse constraints to be removed at the end 
of the interaction. The ThingLab II user interface framework has 
hooks that allows custom widgets, such as sliders and buttons, to 
be handled in a similar manner. Thus, the ThingLab II UI is simply a
special imperative program that interacts with the constraint world.

The application program may also interact with the constraint 
world. The rules for this are simple. Any variable may be examined 
at any time. However, the application must be only change the 
values of variables in a way that allows constraints on the variable 
to be kept satisfied as well as possible. One way to do this is with 
the set:to:strength: message. For example, one could write:

p set: #x to: 15 strength: #preferred

This statement can be read: “I would prefer that the x part of point 
p be 15 now.” It is implemented by adding an edit constraint with a 
strength of preferred to the x part of p and invoking the planner. If 
the planner finds a way to satisfy the edit constraint, then the value
of x is changed and the plan is executed; otherwise, the value of x is
left unchanged. Finally, the edit constraint is removed.

Because the set:to:strength: mechanism invokes the planner twice 
(once to add and once to remove the edit constraint) it is not 
efficient if a sequence of changes must be made to the same 
variable, such as during an animation sequence or a drag 
interaction. In such cases, the client program must add edit 
constraints for all variables that will be changed, extract a plan, 
and invoke the plan after every set of variable change. This is how 
the dragging is implemented in the ThingLab II UI.

The mechanisms just described are clearly not as easy to use as one
would like and should be thought of as work in progress. Many of 
the issues raised will be addressed in Bjorn Freeman-Benson’s 
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thesis on constraint-imperative programming.
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4. The User Interface
Gestures

The system recognizes several different gestures made with the 
mouse, namely: click, double-click, and drag. All gestures are made 
with the red button of the mouse and possibly the shift key, and are 
context sensitive.

A drag occurs when the mouse button is held down longer than 
about a quarter second. A special kind of drag, called a "sweep", is 
made by moving the mouse down and right quickly during the 
initial mouse press. This is used for the "area select" operation.

Selecting

The system maintains a list of selected objects which are used as 
arguments to menu commands or input actions. Sweeping is used 
to select multiple objects to operated on, with feedback given by 
drawing a temporary rectangle around the area to be selected. 
Shift-clicking or shift-sweeping toggles the selection of the 
designated objects. Clicking over an object makes it the only thing 
selected. Clicking over the background clears the entire selection. 
Double clicking over an object "opens" it. (This is an example of 
gesture whose meaning varies with context. In the parts bin, 
opening an parts bin brings up a new window containing its 
contents while opening a thing brings up an editor on the thing. In 
a thing editor window, double-clicking on a part brings up an 
inspector window on the part.) Double- clicking over the 
background does a select-all operation. Non-sweep drag gestures 
over the background are used for the "scroll" operation (reflected 
by a little hand cursor). All operations except moving and selecting 
objects can also be invoked via the menu.
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Parts Bins

Primitive and previously constructed things are kept in a set of 
hierarchically nested, iconic parts bins. The root of the hierarchy is 
called “Top Bin”. A special bin called “All Parts” contains icons for 
all primitive and constructed things in the system and is the only 
parts bin from which a thing may be deleted from the system. The 
user may construct additional parts bins to organize his set of 
things as desired. 
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The icon for a given thing may reside in any number of parts bins, 
allowing Things to be cross filed in a number of bins.

Editing Things

Most Things may be moved by dragging them with the mouse. 
Several objects may be selected and dragged together. Such 
interactions are accomplished by adding mouse constraints to the 
location parts of the objects to be moved. If any of these locations is
fixed by a constraint of higher strength, that object cannot be 
moved. It is possible to increase the strength of the mouse 
constraints using the ThingLab II Control Panel. This is useful when
one wishes to move the PointAnchor.

Editing non-graphical values not quite so obvious. You specify 
numbers by selecting one or more NumberPrinter or 
NumberDisplayer things and typing digits. Constraints are 
resatisfied as you type. Backspace deletes the last digit, the minus 
sign changes the sign, and the period may be used to input floating 
point quantities. Strings may by typed into TextThings in a similar 
manner.

To draw bits into a FormDisplayer, use the yellow button (the red 
button is used to select and move it). You may also bring up a fat-
bits editor on the form by using shift-yellow button.

As a last resort, you can edit the value of an object using a 
Smalltalk inspector. This goes outside the normal constraint world, 
however, so constraint satisfaction will not occur until you do 
something else to trigger it. You can open an inspector by selecting 
a single object and invoking the "inspect" menu item or by double-
clicking over the object. If there is no selection, invoking the 
"inspect" menu item will open an inspector on the top-level thing.
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Using Custom Constraints

A custom constraint allows the user to define a new constraint 
directly from the direct manipulation interface. There are two-, 
three-, and four-variable custom constraints. Initially, a custom 
constraint does not constraint its variables in any way. Shift-
clicking on the custom constraint brings up a Constraint Definer 
view. The user types in the methods of the constraint separated by 
blank lines. A method consists of 
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one or more assignment statements. The constrained variables 
listed at the top of the view should be used in these statements. It is
also allowable to reference global variables such as "Transcript". 
When done, the use invokes "accept" from the menu and the 
constraint is installed. Since the constraint is usually executed as 
soon as it is installed, the user should be sure that the variables 
have reasonable values (i.e. not nil) before installing the constraint.
To remove a custom constraint, delete all the methods and "accept" 
again. This will return it to its initial, unconstraining, state.

The Module Compiler

The Module Compiler is invoked with the "make module" menu 
command in a thing construction view. This changes the view to one
used to specify the parts that should be externally visible after the 
module is compiled. In this view, parts to be externally visible are 
displayed normally and all other parts are shown in gray. External 
parts may be toggled by shift-clicking on them. When the external 
parts have be designated, the "compile" menu command is invoked.
The compiler presents a picture giving feedback as it goes through 
the compilation process. Then, the view is changed back to a thing 
construction view, but now it shows the compiled module instead of
the original thing. You may interact with this module to verify that 
it behaves correctly. The "view source" and "view module" menu 
commands can be used to switch between the source thing and the 
module compiled from it.

Warning: The Module Compiler has not been tested extensively and
almost certainly has lingering bugs.

The Debugger

The debugger allows the user to study the constraints of a thing 
through a graphic display of the underlying constraint/dataflow 
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graph. It is invoked with the "debugger" menu command in the 
thing construction view. The nodes in this constraint graph 
represent variables and the arcs represent constraints. Variables 
are labeled with their path and constraints are labeled with 
abbreviations representing their strengths.
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The graph is not presented all at once but rather in independent 
subgraphs called partitions. By definition, there are no inter-
partition constraints and thus each partition behaves independently
of all other partitions. The number of partitions is displayed in the 
upper left corner of the debugger view along with two arrows. 
Clicking on the arrows with the mouse cycles forward and 
backward through the partitions.

Constraint arcs are labeled with arrow heads to show which 
constraint method was selected by the planner for each constraint. 
If the constraint is not currently satisfied, its arc is displayed in 
gray. The debugger initially shows the dataflow graph for the 
current solution. There may be multiple, equally good solutions. 
These may be cycled through using the arrows. The first time one 
of the arrows is pressed, all solutions are computed (which may 
take a while) and then the number of solutions is displayed. Only 
the arrowheads and gray/non-gray status of the constraint arcs 
changes when the displayed solution changes.

Constraints and variables and be moved with the mouse to create a 
pleasing and readable layout. In addition, several menu commands 
help achieve a good layout. The "center constraints" command 
centers constraint labels between the constrained variables. The 
tails of constraints with only one variable, such as stay, mouse, and 
edit constraints, are made to point away from the center of the 
constraint graph in an attempt to keep them out of the way. The 
"layout" command invokes a more powerful but slower graph layout
algorithm. The graph is redisplayed as the algorithm executes and 
the user may press and hold the mouse button to force the layout 
algorithm to terminate early.

Warning: The layout algorithm becomes very slow for large graphs. 
However, even when nicely laid out, large graphs are difficult to 
understand so perhaps some sort of modularity mechanism is 
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needed to limit the amount of detail presented to the user.

5. Release Notes
This version of ThingLab II runs only on version 2.3 of Smalltalk-80 
from ParcPlace Systems. It should, however, port fairly easily to 
other standard Smalltalk-80 systems. For example, we ported an 
earlier version to Tektronix Smalltalk in half a day. Unfortunately, it 
would be 
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difficult to port the system to Digitalk Smalltalk because in their 
system the compiler classes are not available to the end-user and 
the equation translator and module compiler construct and 
manipulate Smalltalk parse trees.

This is the second release of ThingLab II. The first release was 
given out to only a few other research laboratories. This version 
fixes a number of the bugs and limitations of the first release and 
improves performance considerably.

Although we haven't the resources to maintain ThingLab II, we are 
definitely interested in your experiences with the system, including 
bug reports and suggestions. Comments should be addressed to:

John Maloney (jmaloney@june.cs.washington.edu)

who may also be reached at:

Department of Computer Science and Engineering, FR-35
University of Washington
Seattle, WA  98195
USA
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Appendix: Installing ThingLabII
The following three files should be filed in, in order:

ThingLabII.v2.st
Things.v2.st
Demos.v2.st

This will take a while, perhaps as much as an hour on some 
platforms. There is also an optional .form file to be placed in the 
same directory as your image:

ThingLabII.form

If available, this file is used to display a humorous picture when the
image is started.
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